
Challenge 2 By: Mosh Hamedani

 
Building APIs for CRUD Operations

Our form is ready. Soon, we need to post this form to the server to create or update vehicles. So, 
as part of this challenge, you should create a new API for creating, updating, deleting and getting 
Vehicle objects. This API should be exposed at /api/vehicles.

Test these endpoints using Postman Chrome plugin. Ensure that all actions return the proper 
responses and support data validation. Use data annotations to implement validation.  The 
following properties of a vehicle are required:

- Model
- ContactName (max 255 characters)
- ContactPhone (max 255 characters)

Also, each Vehicle should have a LastUpdate property, which should be set at the time it is 
created or updated. 

API Responses 

In ASP.NET MVC5, depending on the type of our controllers, our actions have different return 
types: 

- MVC controllers: an instance of a class that derives from ActionResult
- API controllers: an instance of a class that implements IHttpActionResult

In ASP.NET Core, our controllers are consolidated into one Controller class. Our actions now 
can return IActionResult. There are different classes that implement this interface. With these, 
we can return both JSON objects as well as Razor views. 

Here are some useful helper methods to return an instance of IActionResult:
- Ok()
- NotFound()
- BadRequest()

�1

http://asp.net
http://asp.net


Challenge 2 By: Mosh Hamedani

 
 
API Inputs 

In actions for creating and updating objects, you need to get the JSON object that is sent in the 
body of the request. Decorate the parameter of these actions with [FromBody] attribute:

public IActionResult Create([FromBody] Student student) 

Many-to-many Relationships 

In our domain model, we need a many-to-many relationship between vehicles and their features. 
(In the real-world, it may be more accurate to associate features with models rather than 
individual vehicles. However, for the purpose of this course, assume that features are dependent 
on the vehicle.)

At the time of recording this course, Entity Framework Core (v1) does not support many-to-many 
relationships. But chances are, by the time you’re taking this course, this feature is added in the 
current version of Entity Framework. 

So, to implement a many-to-many relationship, we need an association class between vehicles 
and features. This is exactly the same way we implement many-to-many relationships in 
relational databases. There’s always an intermediary table with a composite primary key (or two 
foreign keys) referencing the related tables. 

In your solution, call this class VehicleFeature. This class should have two references: one to 
the Vehicle class and the other to the Feature class. Be sure to add primary key properties as 
well (VehicleId and FeatureId). 

In DbContext, you need to use fluent API to define a composite primary key on VehicleFeature 
class. 

protected override void OnModelCreating(ModelBuilder mb)  
{ 
   mb.Entity<VehicleFeature>().HasKey(vf =>  
        new { vf.VehicleId, vf.FeatureId });  
}

�2


